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Abstract 
The peak of the spectral line Ni Ka2 was measured 
by the double-crystal spectrometer in the arrangement 
(Si 440 sym., +Si 440 sym.). It is possible to adjust 
the Si crystal so that the conditions for coplanar 
three-beam Si[000, 440, 404] diffraction are satisfied 
for the wavelength of the incident radiation A--- 
0.166288 nm involved in the Ni Ka2 peak. When the 
second Si crystal was adjusted to this three-beam 
diffraction position an anomalous change of the 
measured dependence was found. A very simple 
model of the experiment was suggested and the 
necessary calculation completing the paper of Graeff 
& Bonse [Z. Phys. B, (1977), 27, 19-32] was performed 
to explain qualitatively the anomalous change. 

1. Introduction 
Nearly seventy years ago P. P. Ewald published the 
first of his admired papers on the ttynamical theory 
of the diffraction of X-rays. Many investigators were 
able to use his theory to understand the details of 
X-ray diffraction in perfect or nearly perfect crystals, 
and even now investigators find in Ewald's work much 
inspiration for the solution of diffraction problems. 

One of the problems arising from the dynamical 
theory which are studied in our laboratory is coplanar 
many-beam diffraction. An investigation of this forms 
the subject of the present paper. Ewald himself was 
very interested in many-beam diffraction problems 
(Ewald & H6no, 1968; H6no & Ewald, 1968). The 
most recent information about progress in this field 
can be found in Multiple Diffraction of  X-rays in 
Crystals (Chang, 1984). 

Coplanar three-beam Si[000, 440, 404] diffraction 
was first mentioned by Deslattes (1968) and was later 
examined by Graeff & Bonse (1977) from an inter- 
ferometric point of view. The experimental part of 
our treatment of Si[000, 440, 404] was presented 
briefly at the Eleventh International Congress of 
Crystallography in Warsaw (Bub~ikov~i & Pacherovfi, 

* This paper should be regarded as forming part of the Ewald 
Memorial Issue of Acta Cryst. Section A published in November 
1986. The manuscript was received in its final form too late for 
inclusion. 

0108-7673/87/020161-07501.50 

1978). In this paper we present the details of our 
experiment together with an explanation based on 
the dynamical theory. 

2. Experiment 
Coplanar three-beam Si[000, 440, 404] diffraction 
was investigated by a precise double-crystal spec- 
trometer (DCS) in the antiparallel arrangement. Both 
crystals in the spectrometer were dislocation-free 
silicon single crystals aligned for 440 diffraction. 

Fig. 1 shows the situation in the plane of incidence 
when the DCS is ideally prepared for the measure- 
ment of the spectral dependence [Si 440, +Si(3) 440]* 
of the Ni Ka2 line. The plane of incidence (identical 
with the plane of the figure) is common to all par- 
ticipating diffractions. In the ideal case normals to 
the diffracting planes (110)cl, (ll0)c~ and (101)c~ lie 
in the plane of incidence. 

The measurement consists in the rotation of C2 
(throughout, C1, (]2 will be used to mean the crystal 
C1 or the crystal C2), which is in the coplanar three- 
beam diffraction position, around the vertical axis a2. 
While adjusting the DCS the following situations 
arise: 

(1) In the parallel arrangement (Si 440, -S i  440) 
information about the parallel positions of ( l l0)c,  
and (110)c2 is found. 

* The symbol Si(3) means the Si crystal adjusted to the coplanar 
three-beam Si[000, 440, 404] diffraction position. 

Cl(Si) 

(11 ~ "- Ni KIx' 2 

'~7 440 

404.4- ____~Cz{Si}{1101 

{101} i 
Fig. 1. Schematic drawing in the plane of incidence of the double- 

crystal spectrometer used in the experiment. 
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(2) C2 is driven back to the (440, +440) position. 
(3) The DCS is at this moment set so that the 

radiation falls on the flank of C2. Then it is very 
slowly rotated with C2 around the axis al. The 
moment when C2 goes through the position in which 
the (101)c2 planes are parallel to the (l l0)c,  planes 
is manifested by an increase in intensity of the (440, 
-404) reflection. 

(4) The device is not equipped for automatic rota- 
tion around the al axis. The manual adjustment of 
C2 to the correct position is the most delicate 
operation of the whole experiment. The adjustment 
is evaluated by the shape of the (440,-404) rocking 
curve in comparison with the ideally adjusted 
(440,-440) rocking curve (point 1). 

(5) When C2 is considered to have been adjusted 
to the coplanar three-beam Si[000, 440, 404] position, 
the DCS is slightly turned so that the radiation falls 
only on the (110) surface sufficiently far from every 
other surface to satisfy the semi-infinite crystal 
condition. 

(6) C2 is rotated automatically by steps or 
manually (according to the size of the angle at which 
the measurement is performed) and so the spectral 
dependence [440, +(3)440] is obtained. 

(7) With the automatic measurement C2 returns 
from the end point to the starting point and the 
measurement is repeated at least twice. 

(8) The device is returned to point 1 and a sub- 
sequent attempt to improve the adjustment of C2 to 
the coplanar three-beam Si[000, 440, 404] diffraction 
takes place. 

(9) The equivalent positions of Si(3) - Si[000, 440, 
044], Si[000, 440, 404] and Si[000, 440, 044] - may be 
obtained by appropriate rotation of C2 around the 
axis al. The measurement of the spectral dependence 
[Si 440, +Si(3) 440] was repeated for these equivalent 
positions. 

(10) Several times during the experiment the 
counter was set for the detection of the extremely 
asymmetrical reflection 404 (or 044, 404 and 044). 
No reflected energy was registered in these cases. 

The device guarantees that for all operations 
described above (1-8) the normals to the ( l l0)c,  and 
(110)c2 planes lie in the plane of incidence within 
limits of +1.5". The angle between the two positions 
of C z [(440, +440) and (440, -440)] is measured with 
an accuracy better than 1". The automatic rotation of 
C2 around the axis a2 can be performed by steps of 
0.1, 0.2, 0.4 or 0.8". The pulse summation time of the 
scintillation counter is automatically controlled by 
the registration device. 

In Fig. 2(a) the whole [Si 440 sym., +Si(3) 440 
s y m . ] / N i  K a  2 rocking curve is shown (the angle of 
rotation of C2 was 1620" for this measurement) and 
in Fig. 2(b) the part around the anomalous behaviour 
is shown (30" of the rotation of C2). The curve ot Fig. 
2(b) was measured automatically point by point in 

steps of 0.2" and every point was registered for 1 min. 
For the shift to the subsequent point we had a break 
of 6 s during which the registration was halted. The 
shifting itself lasted 1.5s. The interval AA= 
5 × 10 -6 nm* corresponds to an angle of rotation of 
C2 of 21.5" [and similarly AA = 10-4nm (Fig. 2a)¢:> 
429.7"]. 150 steps were needed for the 30" interval of 
Fig. 2(b). The drawn curve is placed between the 
experimental points so that the maximum of the rela- 
tive departure of the experimental points from the 
curve is about +2%. The anomalous curve was 
obtained over a period of 2-75 h. The room tem- 
perature was constant to ±0.1 K during the 
measurement. 

3. Theory 

The coplanar three-beam Si[000, 440, 404] diffraction 
was calculated on the basis of the fundamental 
equations of dynamical diffraction in the arrangement 
given by Penning & Polder (1968) (henceforth PP). 

* The explanation of the conversion AA/A0 is as follows. The 
rotation of C2 of the dispersive DCS in the plane of incidence 
causes a shift of the spectral window. For a general arrangement 
(n, ~m)  of the DCS the following relation holds: 

[ah l=  AA0/[tan 0, ~ tan  0,.[ 

(AO = angle of the rotation of (72, 0,, 0,, = Bragg angles of diffrac- 
tions n, m for the wavelength h). This relation can be very easily 
and intuitively derived by means of the corresponding DuMond  
diagram. In the [Si440,+Si(3)440]  case studied it is 
[AA[[ 10 -6 nm] = 0-232 AO [arc sec]. 

5xlO6nm 
- _ ~  

(a) 

10-4nm 

(b) 

Fig. 2. (a) The [Si 440 sym., +Si(3) 440 sym.]/Ni Ka2 rocking 
curve with the anomaly caused by the coplanar three-beam 
Si[000,440,404] adjustment of the second crystal. (b) The 
anomaly on the [440, +(3)440] rocking curve. There are 150 
experimental points lying on the anomaly. 
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The PP treatment is in accordance with our pre- 
vious studies of coplanar many-beam diffractions 
(Pacherovfi, 1979; Pacherovfi & Bubfikovfi, 1982; 
Pacherovfi & Bub~ikovfi, 1984), and seems to be 
entirely adequate in this case. 

The fundamental equations of the dynamical so- 
lution of n-beam diffraction [PP, equation (3.8)] can 
be arranged for coplanar diffraction as follows: 

AoYj = 0 , (11 
j = l  

~, A o ( u , . u j ) X j = O  , i = l , 2 , . . . , n .  (2) 
j = l  

Xj, Yj are the amplitudes of the ~r, or polarization 
components respectively of the dielectric displace- 
ment Dj inside the diffracting crystal; Ao~i#j)= g~jj; 
A ,  = ~o-2(u i .  ~)/km; g~0 is the term in the Fourier 
sum of the polarizability per unit volume correspond- 
ing to the reciprocal-lattice vector b 0 = k j -k~ ;  ui is 
the unit vector parallel to the vacuum wave vector 
ki, k~ = k~u~; A is the deviation of the centre of the 
reflection sphere from the Laue point. 

We define the quantity Ak -- k - k,,, which describes 
the change of the wavelength of the incident radiation. 
It was shown by Pacherovfi & Bubfikovfi (1984, 
Appendix A4) that all equations resulting from (1) 
and (2) valid for k - k m  hold also for k ~ km if the 
quantity g~o is substituted by g~oef = g~o+2Ak/k. 

4. Calculation 

The Ewald geometrical construction of Si[000, 440, 
404] is given in Fig. 3 in which ul, u2, u3 and ~ from 
(1) and (2) are introduced and the coordinate system 
xz in the plane of incidence together with the surface 
normal v are shown. 

In the case of Si[000, 440, 404] @0 = @44o and 
ui. u s = -0 .5  for all i , j  ( i , j  = 1, 2, 3, i # j ) .  Therefore 
we can solve both sets of equations (1) and (2) with 
the single set of equations 

3 

~, BoZj=O , i = 1 , 2 , 3  (3) 
j = l  

in which 

BOO#j ) = B = ~ o  for tr polarization 

Bo(~#j ) = B =-0"5~44o for 7r polarization 

Bii = Aii 

Zi = Y~ for tr polarization 

Z~--Xi for 7r polarization. 

To unify the notation we will write Bo = ffoef. 
The secular equation of Si[000,'440, 404] is 

B,,B22B33- B2(B~, + B22+ B33)+ 2B3 = 0. (4) 

By expressing Bii in x, z coordinates (4) leads to 

3(2x - kBo)z 2 - 2x 3 - 3Bokx 2 

+ ka(2B 3 -3B2Bo + B3o) = 0, 

i.e. 

z1.2 = +{[2x 3 + 3Bok:x 2 

- k a ( 2 B a - 3 B E B o  ÷ B~)] / [3 (2x -kBo)] }  1/2. (5) 

Three asymptotes of the dispersion curves (5) are: 

x -- O. 5 kBo, (6) 

z =  +31/2(x + kBo)/3. (7), (8) 

When we use the above procedure on the two-beam 
Si[000, 440] and Si[000, 404] diffractions we obtain 
the following: 

(a) Si[000, 440]: The secular equation Bl lB22  = B 2 
is expressed in x, z coordinates as 

Zl .E=+{[(x+kBo)E-kEB2] /3}  1/2 (9) 

with asymptotes 

z = + 3 1 / 2 ( x + k B o ) / 3  [cf (7), (8)]. 

(b) Si[000,404]: In this case the dispersion 
equation is 

z = 31/212x2 ÷ kBox 

+ k E ( B 2 - B E ) ] / [ 3 ( 2 x - k B o ) ]  (10) 

and its asymptotes are 

x=O.5kBo  and z=3a /E(x+kBo) /3  [cf (6) , (7) ] .  

We can see that the three asymptotes of the three- 
beam dispersion curve are the same as the three 
asymptotes of the two corresponding two-beam dis- 
persion curves. 

Some interesting properties of the dispersion curves 
arise from the following arrangement of equations 
(5) and (9). We can rewrite these in the forms 

Zl,2 = + { ( X - - X 1 ) ( X - - X 2 ) ( X - - X 3 ) / [ a ( x - - x 4 ) ] }  1/2 (5a) 

404   iu 
Fig. 3. Ewald's geometrical construction for the coplanar three- 

beam Si[000, 440, 404] diffraction. The definition of the basic 
vectors and the system of coordinates used in the calculation is 
shown. 
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where 

xl = - k ( B o -  B) 

x2 = - k {  Bo + 2B + [ (3 Bo + 2B) 2 - 16B2]'/2}/4 

x3 = -k{Bo+  2 B -  [(3Bo+ 2B) 2-16B2]~/2}/4 

x4 = 0.5 kBo 

zLz = + [ ( x -  s~a)(X - ~:2)/31 a/2 

where 

(5b) 

(9a) 

~, = - k (  Bo-  B) } 
~2 = -k(B.o + B) _" (9b) 

The values of x = x~,2.3 or x = ~:a,2 satisfy the condition 
z~,2 =0.  In the case of the two-beam Si[000,440] 
diffraction the values of x = ~1.2 coincide with the 

't llllll . = 
/ " 111111 ,, ° ' o i 0 ii ~l 

×1 •IIIIIIN\ : : : 

o L  . ! o 1 

x 

l -i N 
(a) 

X l  

X3  ,,~ 

, ~ , ~  
x , li1 

o, b, oI d' 

xz'~J I'" 

(b) 

Fig. 4. The Ak dependence of XI,2,3, 4 and ~t.z illustrating the 
character of the Si[000, 440, 404] dispersion surface. See text. 
(a) o- polarization, (b) ~- polarization. 

vertices of the dispersion hyperbola. Two of the three 
intersections of the three-beam dispersion curve (5a) 
with the axis x can be joined to the vertices ~,2. They 
are x, = sea and X3or2 "" S¢2 (see Fig. 4). We notice that 
~, < ~2 for ~r polarization but ~2 < ~, for rr polariz- 
ation. 

The values of xa,2.3,4 restrict the ranges of total 
reflections of Si[000,440,404]. Owing to the Ak 
dependence of Bo they are functions of Ak as well. 
It is simple to pass from xa,2,3,4(Ak) tO the functions 
X~,2,3,4(AA) which appear in the DuMond diagram. 
For this purpose we need: 

A,.,,=2'n'/km, AA/Am=-Ak /k , , , ,  
(11) 

ao =243  ax/(3k, .)  

(the angular measure showing the shift ax  of the tie 
points along the dispersion surface if the angle of 
incidence of the incident wave changes about AO) and 

x', = - ( x ,  + O.5Ak  ) (12) 

(the minus sign follows from the fact that (?2 is in 
the antiparallel position relative to Ca). 

In the simplest model of our experiment the 
anomalous behaviour is explained by the Ak depen- 
dence of the size of the spectral window (Ca x C2), 
i.e. the reflection coefficient is considered to equal 1 
if the angle of incidence belongs to the range of total 
reflection, elsewhere it is equal to 0. The vertical 
divergence of the incident beam is considered to be 
zero. 

5. Results 

The constants used in our calculation were as follows: 

ao = 0.543095 nm (lattice constant) 

Fo = 112 ( F ,  KL terms of the Fourier 

F44o = 42.80 sum of the structure factor). 

The derived quantities used in the calculation are 

k,, = 37.7849 nm -1, 

Am = 0" 166288 nm, qJo = --1 "734 x 10 -5, 

qJa4o = --0-663 x 10 -5. 

Fig. 4 shows the Ak dependence of the values of 
Xl.2.3. 4 [equation (5b)] and of ~,,2 [equation (9b), 
~:, = x~, s¢2 = dashed line]. The ranges of total reflec- 
tions are indicated by the hatching. Several values of 
Ak for which the character of the dispersion curve 
changes are determined (Bo = - 2 B ,  Bo=2B/3  and 
Bo = B). We added to these values also the value of 
Bo = 0 for which the asymptotes of the dispersion 
curve intersect at one point. Arrows a-e  show the 
values of Ak which correspond to the pictures of the 
cuts through the plane of incidence of the dispersion 
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surface defined by Graeff  & Bonse (1977). The lines 
below mark  values of  A k  for which the same pictures 
are d rawn together  with the angular  dependences  of  
the reflection coefficient in Fig. 8. 

The spectral window for one arrangement of C1 
and C2 of the [Si 440 sym., +Si(3) 440 sym.] experi- 
ment is shown in Fig. 5 [equations (12), (11) and 
¢~,2 = ~:~,2+0.5 Ak were used in drawing Fig. 5]. 

- - 4 . - -  

J / 

60  ° 

(a) 

Xm" . - , - -  

60 ° 0 

(b) 

Fig. 5. The spectral window of the [440, +(3)440] arrangement 
of the double-crystal spectrometer. (a) o- polarization, (b) ~r 
polarization. 

i . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I t , , ' l ' o , , I ' I i i I 

1 05 0 Ak (pro -I) -O.E 

Fig. 6. The Ak dependence of the size of the spectral window. 
Dashed line: w pblarization; full line: cr polarization; thick line: 
the resultant ((7 + ~r) dependence. 

300%- 

200~ 

J 

caLcu[otion 

100o~ 

60~ 

/" ~ experiment  

10~ ' 
Xm 

Fig. 7. Comparison of the calculated and the experimental 
anomaly arising on the [Si 440 sym., +Si(3) 440 sym.]/Ni Kcr 2 
rocking curve when the second crystal is adjusted to the coplanar 
three-beam Si[000, 440, 404] diffraction position. 
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The Ak dependence  of  the size of  the spectral 
window (Fig. 5) is shown in Fig. 6. Fig. 7 compares  
the calculated and the experimental  anomalous  
behaviour  of  the studied rocking curve. The value of  
100% corresponds to the case when (72 is in the 
obvious two-beam Si[000, 440] diffraction position.* 

6. Concluding remarks 

The calculated [Si 440 sym., +Si(3) 440 sym. ] /N i  K~2 
rocking curve quali tat ively agrees with the experi- 
mental  one. It is very likely that the quanti tat ive 
discrepancy is due to a non-ideal  adjustment  of  
(72 to the coplanar  Si[000, 440, 404] posit ion (the 
anomalous  behaviour  of  the rocking curve was very 

* The experimental curve was put on the A axis so that the 
maximum values of the experimental and the calculated curves 
could be achieved at the same value of A. The experimental determi- 
nation of the position of Am is limited by the accuracy of the 
determination of the position of A (Ni Ka2). We estimate this 
accuracy is about AA = +0.6 x 10 -6 nm in our experiment, which 
corresponds to the size of the angle of rotation of (72 of AO = ±2.5". 

sensitive to the adjus tment  within limits of  1'). 
Another  reason for the quanti tat ive discrepancy is 
undoubted ly  our s imple model  of  the exper iment  
which ignores the vertical divergence. 

A P P E N D I X  A 

Dispersion surface 

Several examples  of  cuts through the plane of  
incidence of  the dispersion surface are given in Fig. 
8. The scale on the x axis is shown in Fig. 8(a) ;  the 
scale on the z axis (not shown) is the same as that 
on the x axis. The centre of  the range of total reflection 
of  the two-beam Si[000, 440] diffraction is marked by 
xc. The thick lines indicate the branches of the disper- 
sion surface excited when the surface normal  is orien- 
ted from the top down. 

Note the interesting property of the dispersion 
surface in F igs . .8 (b) - (e )  for ~ polarizat ion and in 
Figs. 8( i ) - ( / )  for ~- polarization: the central part of  
the dispersion surface first decreases to a point  and 

• 
x ~ ( ~ m ~ )  - 1  0 x~ 1 2 

(a) 

(b) 

II [ I 

F--] 
I I 

1 i 
(c) 

(d) 

(f) 

' ] i 

(k) 

(/) 

(m) 

(n) 

j 
 _SL_ 

i i  

(g) 

(h) 

- .s j tl jl 
] . . -  . . . ,  . . . .  

(i) 

(e) (J) 
Fig. 8. The dispersion surface in the plane of incidence of the coplanar three-beam Si[000, 440, 404] diffraction for several values of 

Ak (for their estimates see Fig. 4). The dependences of the reflection coefficient correspond to the illustrated dispersion surfaces. 
The interval of Ak to which Fig. 8 belongs is Ake (0, 0-65) i~m -~. Dashed lines: ~r polarization; full lines: cr polarization. 
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after that it again enlarges but with the opposite 
orientation of the Poynting vector. A further interest- 
ing property can be found in Figs. 8(e) (tr) and in 
8(i) (Tr). The values of Ak for the cases drawn imply 
xl = x4 and x2 = x3. The dispersion surface in the 
plane of incidence is created by the three lines iden- 
tical with the asymptotes. The last interesting property 
we wish to point out is illustrated in Fig. 8(c). The 
dispersion surface in the plane of incidence is iden- 
tical for cr and 7r polarizations. 

APPENDIX B 

Reflection coefficient 

We define the reflection coefficient according to James 
(1963) as 

R=Iz212/Iz l l  2 (13) 

for the symmetrical reflection 440; for the extremely 
asymmetrical reflection 404 the formula used leads 
to zero. It was found (e.g. Bedyfiska, i973; Colella, 
1982) that in cases of extremely asymmetrical reflec- 
tions linearization of the coefficients of the dynamical 
equations is not permissible. We added to the 
coefficients A, from (1) and (2) the term - ( A .  A)/k  2 
and calculated for k =km the dispersion surface in 
this more accurate approach. The result of this calcu- 
lation gives us in the 3 I.l,m -1 neighbourhood of the 
Laue point a picture of the dispersion surface nearly 
identical with that calculated according to (5) (the 
shift in the values o f  X1,2, 3 is of the order of 10 -5 ~m-1). 
We conclude that the dependences illustrated in Fig. 
5 would stay unchanged in the more accurate 
approach. For this reason we can also expect that the 
resultant dependences shown in Figs. 6 and 7 are 
valid. 

No great problems arose when we attempted to 
proceed in the obvious way to apply the boundary 
conditions and also to calculate the reflection 
coefficient with the linearized coefficienlts A,. The 
formula derived from (13) for Si[000, 440, 404] and 
the 440 reflection 

R44o= BE(Ba3- B)2/(BE2B33- B2) 2 (14) 

does not lead to physically impossible or to 
apparently improbable results. 

Several examples of the reflection coefficient R44o 
are shown together with the corresponding dispersion 
surfaces in Fig. 8. The angular scale given in Fig. 8(a) 
follows from (11). The reflection coefficient R44o 
equals one for the ranges of total reflection. The only 
point for which the calculation using the linearization 
is indefinite is x=x4 and Ak such that Bo=2B/3 
[Fig. 8(e) (tr) and Fig. 8(i) (zr)]. From the continuity 
of R440 we established R44o = 1 at this point. 
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Abstract 

A modification of the Hamilton-Zachariasen theory 
of extinction in imperfect crystals is reported. Unlike 

* This paper should be regarded as forming part of the Ewald 
Memorial Issue of Acta Cryst. Section A published in November 
1986. The manuscript was received in its final form too late for 
inclusion. 

the generally adopted Darwin mosaic model the crys- 
tal is supposed to consist of elastically deformed 
domains so that individual reflection events can be 
treated within the quasiclassical approach developed 
by the author in an earlier study [Acta Cryst. (1984), 
A40, 120-126]. In this way a modified expression for 
the scattering cross section, taking into account 
multiple wave interference, is introduced into the 
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